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THu1TE BooNkRAMP, J. H. M. TEN

Residual Smoothing for Accelerating the ADI Iteration Method for
Elliptic Difference Equations

Residuale Qlattung ist eine einfache Technik zur Erhohung der Konvergenzrate von Iterationsverfahren fiir elliptische
Differenzengleichungen. In dieser Arbeit kombinieren wir die residuale Glittung mit dem ADI-Iterationsverfahren. Dies
kann auf verschiedene Weise erfolgen. In geeigneter Weise angewandt kann residuale Glittung die Anzahl der Iterationen
betrichtlich verringern und damit auch die Rechenzeit fiir das ADI-Schema reduzieren. Die Parameterwerte des geglitteten
ADI-Schemas werden so gewdhlt, dap die hoch- wie auch die niederfrequenten Komponenten im Iterationsfehler sehr gut
gedampft werden. Durch die residuale Gldttung werden auch die anderen Komponenten im Fehler geeignet gedimpft. Nume-
rische Beispiele zeigen die Leistungsfihighkeit des geglitteten ADI-Schemas gegeniiber dem ADI-Schema.

Residual smoothing is a simple technigue to increase the rate of convergence of iterative methods for elliptic difference
equations. In this paper, we combine residual smoothing with the ADI iteration method, which can be done in several ways.
When applied in the proper way, residual smoothing can considerably reduce the number of iterations and thus the computing
time of the ADI scheme. The parameter values of the smoothed ADI scheme are chosen such that the high- and low-frequency
components in the iteration error are damped very well. Due to the residual smoothing, the other components in the error are

also properly damped. Numerical examples demonstrate the performance results of the ADI scheme and the smoothed ADI
scheme. .

PesunyanbHoe criaKnBaHue ABIHETCA 1POCTHIM METOXOM JJIA ¥CKOP €HUA CROPOCTH CXOXMMOCTH UTepPaloH-
HBIX METOJ0B [JIf PelleHUA SIIUNTHYECKUX PAa3HOCTHBIX ypaBHeHUii. B 5Toif cTarbe coueraeM pe3auayalb-
1oe criaskKuBaHIe C UTePAlMOHHEIM METOJO0M ajlbTepHUPYIOIIUX Hanpasiennil (AOV B anruiickoit autepa-
Typsl — 3gech MAH), 4T0 MOKHO HedaTh Pa3iudHbIM o0paszoM. EciM NpuMeHAETCA Pe3UIYyANbHOE Criia-
KUBaHUe IPABUJBHEIM 06pa3oM, dTOT METOX 3HAUMUTEJIbHO MOMET YMEHBINATh 4YMCJ0 UTepanuil M TaKuM
o0pasom ¥ BpemsA BHuHcleHus cxeMsl MAH. 3HaueHnsa napaMeTpoB criaskeHHOI cxembl MAH BrIOHpaio-
TCA TaK, YTO BBICOKOYACTOTHbIE ¥ HU3KOYACTOTHBIE KOMIIOHEHTH B OMMOKE WTepalHHd TOPMO3UPYIOTCA
04eHb XOpouo. Baarogapsa pesugyalbHOro Cria:KNMBAHHA O0CTAJIbHBIE KOMIIOHEHTH B OMINOKE TOMe TOPMO-
3UPYIOTCA TOJKHBIM 00pasoM. UuciheHHBle NIPUMEDPLEl TEMOHCTPUPYIOT IIPOM3BONUTENbHOCTE cxeMbl MAH
It craaxieHHoi cxemsl MAH.

1. Introduetion

‘We consider the first boundary-value problem for the two-dimensional elliptic partial differential equation (PDE)

(@, ¥) )z + (9=, ¥) wy)y — i@, y) v = fl2,9), (x,y) € £ =1[0,1] X [0, 1], (L1
where p(x, y) > 0, ¢(z,y) > 0 and w(z, y) = 0. As a special case of (1.1) we employ the Poisson equation
Uz + Uyy = f(2, Y) (1.2)

as a model problem.

For space discretization, we cover £ with 2 uniform space grid with gridsize 1, where h =1/(M + 1) and M
is the number of internal gridpoints in z- and y-direction. Space discretization of (1.1), using standard central
differences, yields a difference system

DgU + DyyU = B, (1.3)

In (1.3) U is a vector, with components U;;, and B is a vector originating from the right hand side f and the bound-
ary conditions for u. The component Uj; is the finite difference approximation to u(ih, jk). The matrices Dy, and Dy
in (1.8) are the finite difference replacements of respectively

0 3l 1 s} 3 1
om (P(% ) 5;) -5 w(z, ¥) and iy (‘](1‘: Y) é;) 5 w(z, y)

and are defined by

1 . , 1

(Deal)yy i= 35 (Pi-rs Uirg — Pimay,i + Pivig) Ui -+ pivapsUivng) — 5 wili s (1.4a)
1 1

(DU = 75 (@ui-amUii-1 — @i-am + Giram) U + giiramUii) — 5wl (1.4D)

With p;. /2,7 = 2((i = 1/2) b, jh) (analogous definitions for gi,j1 (1/2) and wy;). The matrices Dy, and Dy, are tridiago-
nal, symmetric and negative definite.

For the iterative solution of (1.3) we examine the ADI scheme of PracEMAN and RACHFORD [3, 5]. For the
model problem, the ADI scheme is known to be a fast scheme if one chooses its parameter values in the right way.
However, the scheme is very sensitive to the parameter values used, i.e., the iteration count grows rapidly when the
the computation is carried out away from the optimal parameter values. Therefore, the ADI scheme is in general not
a fast jteration technique. It is the purpose of this paper to apply residual smoothing for improving the rate of
convergence of the ADI scheme and, most importantly, to make the scheme less sensitive to the choice of the
Parameter values. This paper is inspired by [2], where residual smoothing is applied to Jacobi iteration.

81 Z.angew. Math. Mech., Bd. 68, H. 9



446 ZAMM - Z. angew. Math. Mech. 68 (1988) 9

The contents of the paper is the following. In Section 2 a short outline of the theory of residual smoothing is
given. The ADI scheme and the smoothed ADI scheme are discussed in Section 3 and parameter values for both
schemes are given in Section 4. Section 5 is devoted to a numerical comparison between the ADI scheme and the
smoothed ADI scheme. This comparison also involves a nonlinear example. In Section 6, an alternative smoothed
ADI scheme is briefly discussed. Some conclusions are formulated in Section 7.

2. Residual smoothing

In this section we give ashort outline of the theory of residual smoothing as a means of accelerating the convergence
of iterative methods for elliptic difference equations. For a more extensive treatment of the special type of explicit
residual smoothing used here, the reader is referred to [2].

Consider the linear system

AU =B, 2.1)

obtained by discretizing a linear elliptic boundary value problem. We assume that 4 has negative eigenvalues. Itera-

tive methods for solving (2.1) are based upon the splitting 4 = P — @, where P is a non-singular and easily invert-
ible matrix [1, 5]. The iteration scheme thus takes the form

PU*+1 =QU" + B, 2.2)
or equivalently, in residual form,
PU*+1 = PU* — (AU — B). (2.2)

The idea of residual smoothing is now to multiply the residual in (2.2') by a matrix S such that the condition
number of S4 is much smaller than the condition number of 4. The iteration scheme then reads

PU1 = PU» — S(AU™ — B). (2.3)

Thus, instead of solving (2.1), we solve the preconditioned system SAU = 8B with the original iteration method.

Following [2], S is taken of the form § = Py(D), where Py(z) is a polynomial of degree k satisfying Py(0) =1
and D is a scaled difference matrix with eigenvalues in the interval [ —1, 0]. In order to analyse the residual smooth-
ing technique we choose

D=4, ' (2.4)
e

where ¢ == p(A4) is the spectral radius of 4. In [2], for this choice, an optimal smoothing matrix § = Py(D) is derived,
in the sense that SA4 has negative eigenvalues and the smallest possible condition number. The condition number

y(4) of a matrix 4 is defined as p(4) = p(4)/6(4), where §(4) is the in absolute value smallest eigenvalue of 4.
The polynomial P(z) is given by

_ Tee1(l +22) — 1
where T'(z) is the kth degree Chebyshev polynomial of the first kind. Because of the factorization properties of the
Chebyshev polynomials, the smoothing matrix S can be computed very efficiently if £ = 2¢ — 1 for some positive
integer q.
We emphasize, however, that in actual computations we do not use the difference matrix D defined by(2.4),
because it is much too expensive in the general case. Instead, for one-dimensional problems, the matrix D is given by

0
1 -2 1
1 —2 1

1 —2

1
0
For two-dimensional computations we do not use the two-dimensional analogue of (2.6) because the computation
of § = Py(D) is then not attractive [2]. Therefore, we consider an alternative which only uses one-dimensional
smoothing matrices. The residual r = AU” — B in (2.2) can in the two-dimensional case be written as r = D, U" +
~+ Dy, U™ — B (Cf (1.3)). The residual is then smoothed by applying the one-dimensional smoothing matrix to Dy

and/or Dy,. In other words, let the residual  be arranged in a two-dimensional array in the natural way, then r is
smoothed by applying the one-dimensional smoothing matrix to all rows and/or columns of 7.
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3. ADI- and smoothed ADI iteration

Consider equation (1.3)

AU =B, A = Dyy + Dy . (3.1)
The ADI scheme for (3.1) can be written in residual form as [5]

Doy — 1) U* = (Dpyy — », 1) U" — (AU" — B), (3.2a)

(Dyy — v, I) UL = (Dyy — 9, 1) U* — (4U* — B), (3.2b)

where v;, v, > 0 and are supposed to be independent of #.

The first stage (3.2a) of the ADI scheme is implicit in z-direction and explicit in y-direction. This suggests to
apply in (3.2a) a smoothing matrix §, for the preconditioning of Dy,. In other words, we multiply each column of the
residual in (3.2a) by a (one-dimensional) smoothing matrix S,, where S, is such that §,D,, has the smallest possible

condition number. In the same way, we apply a smoothing matrix S, at the second stage (3.2b) for the precondition-
ing of Dyz. Kach row of the residual in (3.2b) is then multiplied by a (one-dimensional) smoothing matrix S,. The
smoothed ADI (SADI) scheme then reads

(Dag — 9,I) U* = (Dyy —», 1U» — §,(AU™ — B), (3.3a)
(Dyy — v, ) Un+t = (Dyy — w,I) U* — S,(AU* — B). (3.3b)

In the analysis, the operators S, and 8, are defined by S, = P, (—g— Dm) and S, = Py (-Ql— DW> where 9, = 0(Dgza)
1 2

and gy = @(Dyy). We emphasize once more, that in practice the matrices — Dy, and 1 Dy, are replaced by diffe-

1 2
rence matrices like the one defined in (2.6). The degree k of the polynomial Py(z) will be specified later.

If Dyy — 5 (v — v5) I and Dy, 4 5 (v; — v,) I are negative definite then the ADI scheme is convergent [3].
Likewise, the SADI scheme is convergent if Dy — Dyy -+ Sed — (vy — vy) I and —Dyy + Dy + Sy 4 + (v, — ) 1
are negative definite. The proof is along the same lines as the proof for ADI.

In order to get an indication about the performance of both the ADI scheme and the SADI scheme, we consider
the eigenvalues of the iteration matrix of both schemes. These eigenvalues are called the damping factors of the
iteration scheme. In the remainder of the paper we consider the following two cases:

case 1: 0(Dy) = 0(Dy) =0, 0(Deg) = 0(Dyy) =9,
case 2: 0 = @(Dx) 7 02 = 0(Dyy) » 0y = 0(Daz) 7 b5 = 6(Dyy) -
For simplicity, we take v, = v, = », unless stated otherwise, and assume that D, and Dy, commute.
First, we restrict ourselves to case 1. The damping factor of the ADI scheme is given by

(A +v) (Ay +#)

E= PV) = e " 3.4

T ) = a = G4

where J, and 4, are the eigenvalues of D, and D,,, respectively (A, 2, << 0). It is convenient to write § as a function

of the scaled eigenvalues s := A5/0 and uy := A,/0, so that

(pz -+ @) (py -+ w)’ (3.5)

. (pz — @) (py — @)

where w: = »/o. The parameter w should be chosen in the range 0 < =< 1 [5]. In Fig. 1 &(uz, ty; @) s plotted for

4z = uyand for o = 1, 1071, 102, 10-3, For u, = au, (@ 7 1) the graph of |£(ua, py; 0)| displays a similar behaviour.
From (3.3) one can easily see that the damping factor of the SADI scheme is given by

y — V= Pk(lx/Q) (lz '{‘ 7‘1/) .}"55 -V — Pk(ﬂ'ﬂlg) (;‘t + ly)

E = E(‘Ma;, Ry C!)) =

- A

&= E(hn dy3v) = T —» y— (3.6a)
or equivalently as a function of u, and g,

e ) =,uy——w-—Pk(.Mm) (Mm‘{‘ﬂy)_ﬂx*w—})k(ﬂv) (.“x+ﬂ:v). 3.6b

£ = E(Uas fhy; ) e — oy — @ ( )

Note that &(ug, sty; @) = 1 in all points where Py(ts) = Pr(y) = 0. This implies that we should not iterate with a
fixed value of k and w. Therefore, we consider cyclic methods where k& = k, and @ = w,, k, and w, being periodic
functions of q: k, = kg5, 0g = wetx with N fixed. In our experiments we choose k, = 2¢ — 1 (¢ = 0(1) N —1)
since then the smoothing matrices can be computed very efficiently [2]. The integer N will be specified later. In-
stead of £ = &,(iz, py; ) We thus consider the average damping factor

N-1
X = 0(hsy fy Wgy oev s ON—1) 1= [.HO [ (s o Q)1 TV (3.7)
o
2
Since £y(—1, —1; wy) = (3—0—3_—1) and £,(—1, —1; w,) = 1 for ¢ >0, we choose w, =1 in order to damp the
0

eigenvector components in the iteration error which correspond to values of u,, uy close to —1. These components
31
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are the high frequency components. Likewise, the low frequency components correspond to values of u, u, close to 0.
The other w, values are chosen equal: w, = w for ¢ > 0. The average damping factor o« = ox(uz, ty; ) 1= & (Uz, piy;
1, w, ..., w) of the SADI scheme is also plotted in Fig. 1. for y, = p,, N = 6 and w = 1, 107}, 10-2, 10-3. Also in
this case, the graph of &(us, aus; @) (@ 5= 1) is very similar to the graph of a(us, pty; ).

Comparing both damping factors, we see that for small w-values (10-3 < w < 10-2) the SADI scheme has
substantial better damping properties than the ADI-scheme. In particular, with the exception of the lowest ones
(¢ = 0), SADI damps all error components with a factor of a least 0.6. ’

4. Choice of the parameter values

In this section we derive parameter values for the SADI scheme. The derivation of parameter values for the ADI
scheme (3.2) is extensively described in [5], therefore we only present the results.

The damping factor £(As, 4,; ») of the ADI scheme in case 1 is given by (3.4). We choose the »-parameter to
minimize the function

Y =19pr;0,0) ;= max |§ls ;). 4.1)
—eSlg, lyS -6

Asymptotically, the eigenvector corresponding to the maximum damping factor dominates the error. Therefore, in
order to minimize the number of iterations, we have to minimize y(»; 0, ). We emphasize, however, that this only
applies if we compute the solution sufficiently accurate. For moderate accurate computations, the y-value thus
obtained can be far from optimal, i. e., the corresponding number of iterations is far from minimal. A simple ana-
lysis gives that the optimal parameter is given by »* = (Jp)1/2 [5].

Example 1: Consider the Poisson equation. The eigenvalues 4, and 4, of D,, and D,y are given by ,;=

4 . . . . .
= Ay = — }Tz-smz (% zh) , t=L11)M, with h=1/(M + 1). In this case (D) = 0(Dss) =0 z}—j% and
3(Dyzz) = 6(Dyy) = 8 = =2, so that y* =~ -2—;—
In case 2, the function qp to be minimized is defined by
Y =P(¥; 0, 01,0, 0p) 1= max [§(dg, Ay;9)] . (4.1)
—0Sla= -0,
—0Shy= -5,

Assume that 9,0, < ¢,0,. Then one can prove the following result for the ADI scheme [5]: if &; = 8, or 6, < &, and
0105 = 8,0, then v* = (0,0,)'%, and if 0, = 0, o7 0 < 0 and 8,0, < 8,0, them v* = (0502) /2.

Consider the SADI scheme. In case 1, the damping factor £(4,,,; ) is given by (3.6a). Since Egy Ay v) =1
for all 4z, 4, for which Py(4s/0) = Pi(Ay/e) = 0, we have to iterate with varying k = k&, and » = », (see Section 3).
Therefore, instead of & = £(4s,4y; v) We consider the average damping factor x defined by (cf. (8.7))

N-1
& = 0t(Agy Ay Vs eoe s VN 1) = 1 I{,IE(Z:L:}W; ’Vq)l]lIN . (4‘2)
g=
In order to damp the high frequency components, we require &(—g, 1,; vy) = &y(As, —0; %) = 0, which gives vy, = ¢.

For the other v,-values we choose v, = », ¢ > 0. This »-value is chosen to minimize o(—08, —8;9) 1= ox(—6, —0;
@, ¥, -.. , ¥) because of the following reasons:
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(i) the lowest frequency eigenvector corresponding to A, = A, = —4¢ has often a large weight in the error,
(ii) the eigenvalue 1, = 1, = —4 is either known or can be approximated.

In this way we construct a SADI scheme which damps the high- and low-frequency components in the itera-
tion error very well. It turns out that a SADI scheme constructed this way also damps the remaining error compo-
nents very well, as illustrated before in Fig. 1.

So consider &(—3d, —3d; »), which can be written as

a(—6, —8;9) = (~9—1§>“}fr1§ 5 o)) 4.3
> H Q+6 =1 q( > ’V)) ’ (‘a’)
with
2
Eq(”‘é;—'é;?")=<1_‘Pk('—’g‘>6%fv), k=211, g=11)N —1. (4.3b)

If §,(—6, —0d;v) = O for some ¢ > 0 then x(—4, —d;v) = 0, and thus &(—38, —J; ») is minimal. From (4.3b) one

can easily see that &,(—3d, —0;2) =0if v =9, =0 (21’,c (-— ,6_> —_ l) , provided Pk(— —6—) >l . A Taylor series
expansion yields e @ 2

é 8 1
Pk('_"a')zl*ak'é'y ak3=*3“k(k +2), (4.4)

2 2
if by 1= = (g—) (k 4+ 1)* L 1. For k sufficiently small, this condition is fulfilled and »; is approximately given by

v = Ck0, ¢ =1 — 2a; e In our numerical experiments we take »* = », = § (see Table 1).

Example 2: Consider again the Poisson equation for which ¢ = 4/k? and é = z?2. In this case we have

p 8\ _ @ kLY L wt (k1) (k1Y
“N\Te)T T\ T\ T T w\m+i)-

These values for k = 27 — 1 (¢ = 1(1) 5) and for M = 39 are given in Table 1. Note that the value ¢,; does not

make sense since Py (=~ —| << 5 For the general elliptic case one finds similar results since the ratio 3 = O(h?

just as for the Poisson equation.

Table 1. Py(—d/o)-, bx- and cg-values for the Poisson
equation for k& = 29 — 1(¢ = 1(1) 5) and M = 39

k Pr(—0d/e) bx ck
1 0.9979 1.69%* 10-¢ 0.9959
3 0.9918 2.71% 1078 0.9836
7 0.9671 4.33% 1074 0.9342
15 0.8684 6.93% 108 0.7368
31 0.4736 1.11* 107! —0.0528

In case 2, the damping factor of the SADI scheme can be written as (cf. (3.6a))

Ay — 73 — Pu(lsfo1) (As + Ay) _Az — 71 — Pullyfos) Az +4)

/14; - ")1 Z,y - ’)2 (4.5)

‘za: == E(lm ﬂ-y; Vis 7’2) =

Note that in (4.5) we assume that v, 5 v,. The corresponding average damping factor is given by (4.2) with, & =
= £(Aas Ay V1gs ¥2q) defined by (4.5). For the damping of the high frequency components we require §o(—p;,4y;
Vigs Vao) = &olAws —0a3 V10s Vzo) = 0, Which implies that we indeed should iterate with two different »-values (cf. (3.3)).
This gives v,y = p, and v, = 0;. For ¢ > 0 we choose vy, = v, and v, = v,. These two values are chosen to minimize
&(—0;, —0g; ¥, %,), Which can be written as

a(—by, —0y3 v v)=(91"51---—-@2 52Nﬁ11& (—01, —0y3 ¥ v)l)“N (4.6a)
15 25 V1> Ve 0s -0y 01+ O3 go1 q 15 25 V1> V2 ,
with
6\ 6;+96 6,\ 6; + 6
E (e —B.- =1 — e S e SLIR DY I -2} o1 TRy 4.
Sl =01 =031, ) (1 Pk( Q1> 52+”2> (1 Pk( Qz) o +”1) (4.6b)

Also in this case, if &,(—8;, —0,; v1,v,) = 0 for some ¢ > 0 then a(—d;, —0,; vy, ¥,) is minimal as a function of ¥,
and »,. From (4.6b) one can readily see that this condition is fulfilled if », = 1,5 = Piy(—0,/0,) (6, + J5) — 6, or
Vg = a1 = Pi(—0; /o) (8, + 0;) — 8, provided that Py(—0,/0,) > 0,/(0; + ) or Pu(—0y/or) = 0,/(J; + 05). Substi-
tution of the approximation Py(—dior) = 1 — axdefos, @ = 1, 2 (see (4.4)), then yields the following expression for
v1,r and vg 5t v = 0y — au(0y/05) (81 + 05) and o, = 6; — ax(8y/@;) (8; + Og). As in case 1, we choose the following
approximation: »¥ = vy, =~ d, and v3 = v2;1 =~ §,.
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For the computation of the parameter values for both schemes the values of §(Dag), 0(Dyy), 0(Das) and g(Dyy) are

4
78 75 and 6(Dg) = 6(Dyy) = 7% For the general
elliptic equation (1.3) these values can only be approximated as follows. Consider the gencral matrix Dy, defined by

(1.4a). Let p := max p(x, y), pi= min p(z, y) and analogous definitions for ¢, 9 wand w. Let the matrices D,, and
0=z, y<sl 0=sz,ys1

Dm be defined by repla,cmg p,i(llz), jand wy; in (1.4a) by P and w respectively p and w. In other words, Dyy = 6y —
— @l and Dy, = pdu — + wl, with §,, denoting the standard central difference approximation to §2/82% Then
one can easily show that

0(Dex) = @(Dso) < 0(Dza) and  8(Dsr) = 6(Dza) = (D) -
The values (D) and §(D,,) can then be approximated by

required. As we have seen, for the Poisson equation p(Dzz) = 0(Dyy) =

2 _ 1 _
Q(sz)~“'(9 2+ o(De) = =5 (B + p) + 7 @+ w)

and

wi ?Za

1, = 1
0(Dex) =~ Bl (8(Dzr) + 5(240:)) =5 @+p + Z(w + w).

In the same way one finds

X

2 _ 1
0Dy) ~33@ + ¢ + 7 (@ +w) and a(pu)~735(q+q)+ @ 4 w).

“

5. Numerical examples

In this section we present a few numerical examples, in order to compare the ADI scheme and the SADI scheme.
We restrict ourselves to Dirichlet problems. The solution is computed for h = 3, &, & with the parameter
values derived in Section 4. In addition, we compute the solution for A = j; for several y-values, in order to check
whether the »-values derived in Section 4 are good enough. Further, to demonstrate the power of residual smoothing,
we apply the SADI scheme to a nonlinear problem.

For the degree k of the smoothing matrices we choose kb = k, =27 — 1, ¢ = O(1) N — 1, such that ky_; is
the largest k, smaller than 3f = A~ — 1. The reason for thisis, that for k, > M for some ¢, the computation of the
smoothing matrices becomes cumbersome. Thus for h = g, 55, 5 We choose, respectively, N = 5,6,7. We
cmphasize once more that the choice b, = 2¢ — 1 admits an efficient computation of the smoothing matrices [2],
which is a prerequisite for accelerating the ADI scheme. In all computations, the initial approximation is defined
by forming linear interpolations of the boundary values on z = 0, z = 1 and on y = 0, y = 1, respectively, and

by taking the average value of these functions. The iteration is stopped if the scaled residual
40" — Bj|
r(n) 1= 5.1
W= T =B, o4

has dropped below a certain tolerance TOL.
The examples we consider are the following.

Example 1[4, p. 427]:

Uz + Uy =f(@y) s w@,y) =3 (@ —2) (y —y*), fl@,y) =Obaye”t (xy + x4y —3),

4
0 = 0(Da) = 0(Dyy) = 7’ 0 = §(Dzs) = 0(Dyy) = 2.

Example 2:
(€ Uuz)a + (¥ up)y =fl&,9) s uw(@y) = (@y?®, fl@&y) =3y(2+2)y2e” + 222 +y) &),

2

2
0 = QD) = 0(Dyy) = ;b—""(e + 1), 0 = 0(Dz) = 6(Dyy) =%(e +1).

Example 3:
(™% ug)y -+ (W uy)y — (& +y) u = f(z,y),
u(@, y) = (@y)®,  fl@,y) = 32y}(2 — 2y) e~ 4 323y (2 4 2y) e — (2 + y) (ay)3,

1 2 1 1 2 1
Ql""@(DEﬁ):;'ﬁE(e"}‘l)“”_é" 0y = 6(Dx, ___;7_5-(6 1)‘{‘—2‘

2 1 2 1
G=0Dw) =g+ +5, &=0Dn=T(+D+5.
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Example 4:

(8" Us)s + (" wy)y — w(z, 9, u) =0,  u(x,y) = (@y)*, w@ y,u) = 2z +y?) (1 + 2%?) e".

Note that the matrices Dy, and D,, commute for the first two examples but not for the third one. Note that
Example 4 is a nonlinear problem. Like the ADI scheme, the SADI scheme can be applied to nonlinear problems in
a straightforward manner. We have included this example, in order to show the power of the residual smoothing
technique.

Consider the first three examples. First we present results for k = g, %, & obtained with the y-values
derived in Section 4. The results are collected in Table 2, which contains the following values: the total number of
iterations n,, the average reduction factor 7 defined by 7 := 7(ny)1/% (cf. (5.1)) and the computing time (CT) in
seconds needed for the iteration process. For the tolerance we take TOL = 10-8; similar results are obtained for
larger values of TOL. From Table 2 we see that, especially on the finer grids, the SADI scheme needs much less
iterations than the ADI scheme, which results in a considerable reduction of CT.

Next we present results obtained on a 40*40 grid for several y-values, with the purpose of testing the »-para-
meter values derived in Section 4. Case 1 (¢ == 0(D1,) = 0(Dyy), 6 = 8(Das) = 8(Dyy)) applies to the first two examples.

*
TXnstead of », consider for these two examples the scaled parameter w = v/o. One can readily see that w* = A

1/2 e
= (—g—) = (0.039269908 for the ADI scheme and w* = —g— = 0.001542126 for the SADI scheme. Case 2 (g, =

= 0(Daz) 7 02 = 0(Dyy), 0y = 6(Dag) 7 0, = 6(Dy,)) applies to Example 3. Let in this case w := »jp;, then one can
1/2

easily see that for the ADI scheme w* = (2} = 0.040696. Since g, =~ e g; and J, = e d,, it is obvious to choose

&
2, = ev and v, = » for the SADI scheme. The w*-value is then given by 0 * = gl = 0.001656164. The number of

1
iterations, for TOL = 10-8, are presented in Table 3. We may conclude that the parameter values derived in Sec-
tion 4 are fairly good since the corresponding number of iterations is nearly minimal. Furthermore, we see that in
the range 10-2 =X w =< 1072, the SADI scheme is less sensitive to the choice of the parameter values than the ADI
scheme. Thus, an w-value which differs a little from the w*-value can lead to considerably extra computing time
for the ADI scheme, but not so for the SADI scheme.

Consider Example 4. Application of the ADI scheme or the SADI scheme to this nonlinear problem requires
at each iteration the solution of a set of nonlinear tridiagonal systems, for which we use Newton iteration. Results

Table 2. The ny-, 7- and CT-values for the first three examples

ADI
h1 example 1 example 2 example 3

Ny ¥ CT g r CT Ny 7 CT
20 58 0.73  0.702 67 0.76  1.263 76 0.78  1.397
40 116 0.85 5.301 138 0.87 11.069 155 0.89 11.042
80 231 092 41.196 279 0.94 76.486 312 0.94 86.092
SADI
h1 example 1 example 2 example 3

ng T CcT g 7 CT Ny 7 CT
20 18  0.33 0.369 21 042 0512 26 049 0.747
40 21 0.40 1.781 27 049 3.306 34 0.58  4.080
80 25 0.45 9.219 31 0.55 15.490 43 0.64 17.712

Table 3. The ny-values for b = g5 and various values of , for the first three examples

® example 1 example 2 example 3
ADI SADI ADI SADI ADI SADI
5% 102 147 200 143 188 166 159
10-2 100 41 267 39 220 34
5% 1078 199 21 >500 26 440 31
103 >500 22 >500 27 >500 37
w* 116 21 138 27 155 34

Table 4. The ny-, 7- and CT-values for Example 4

Bt ADI SADI
ng 7 CT ng T CT
20 27 0.1 13.013 12 045 5.961

40 95 091 194.378 14  0.51 30.030
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for b = g, & and for TOL = 10-* are presented in Table 4. The best w-values are experimentally found to be
o* = 10-1 for the ADI scheme and w* = 10-2 for the SADI scheme. From this table we see that residual smoothing
leads to a considerable saving of the number of iterations and hence also of the computing time. Note that in this
case the gain in computing time is even more than for the first three examples, since one ADI iteration is now very
expensive compared to the computation of the smoothing matrices.

6. An alternative smoothed ADI scheme

In this section we briefly consider an alternative to the SADI scheme (3.3). For this purpose, we rewrite the ADI
scheme (3.2) in the one-stage form

(Dzg — v 1) (Dyy — v5l) UrHY = (Dgy — vy 1) (Dyy — v, 1) U + (v; +v,) (AU — B). (6.1)
The idea is now to multiply the residual in (6.1) by the smoothing matrices §; and A§,, (see Section 3):
(Dgz — 1) (Dyy — vpI) U = (Dyy — vy I) (Dyy — v,I) U + (v, + v5) S;S.(AU™ — BY. (6.2)

For brevity, we restrict ourselves to case 1 and assume that y; = v, = ». The damping factor of scheme (6.2), as a
function of u; and p, can then be written as

20(phs + fiy)
(s — @) (Hy — o)

&= &(pta, py; 0) = 1 + - Py(pz) Prlpy) (6.3)
where @ = vjp. The corresponding average damping factor « is then given by (3.7) with & = &y(a, py; @,) defined
in (6.3). In order to damp the high frequency error components, we choose wy = 1and w;=w forg=1(1) N — 1
(see Section 3). The average damping factor & = o (pz, py; @) is plotted in Fig. 2 for y; = yy, N = 6 and o = 1, 1071,
10-2, 10-2. Comparing Fig. 1 and Fig. 2 it is apparent that the SADI scheme gives a much better “overall” damping
of the iteration error than the alternative scheme.

As an illustration, we apply the alternative scheme (6.2) to Example 1 for h = ;% and for various values of
the parameter w. For the tolerance TOL we take TOL = 10-8. The results are presented in Table 5. From Table 3
and Table 5 one can readily see that scheme (6.2) is slightly faster than the ADI scheme, however, much slower
than the SADI scheme. Thus, the SADI scheme is clearly to be preferred to the alternative scheme (6.6).

ws=1 w=10-1
10r 10
08 Q8
06+ 08+
Q4r 04
02 02
00 L . 4 ! J 0 L 1 Qo ]
<10 -08 -06 -04 -02 00 <10 -08 -06 -04 -02 00
w =10-2 =10-3
10 w =10
08
08|
04
0.
Fig. 2. The average damping factor for scheme (6.2) for o = 1, 10!
1 I 1 ! I L 1072, 1073

00 L 00 R
-10 -08 -06 -04-02 00 -10 -08 -06 -04 -02 0O

Table 5. ny-values for b = 75 and various w-values for Example 1

o 5% 10— 10-2 5% 1073 10-2

7y 219 79 105 229

7. Concluding remarks

In this paper we considered residual smoothing as a means to accelerate the convergence of the ADI scheme for
elliptic difference equations. Concerning this technique we note the following.
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(i) Residual smoothing can be easily applied to general elliptic problems, even to nonlinear problems, to speed
up iterative methods such as the ADI method.

(ii) For a proper choice of the degree of smoothing % (i = 2¢ — 1 for some integer g = 0), residual smoothing
can be implemented very efficiently.

(iii) Residual smoothing can be combined with the ADI scheme in several ways. When it is applied in the
right way, as is done for the SADI scheme (3.3), residual smoothing can lead to a considerable reduction of the
number of iterations and the computing time for the ADI scheme.

(iv) The parameters for the SADI scheme are chosen such that the high- and low-frequency components in the
iteration error are rapidly damped. Due to the residual smoothing, the other components in the error are also pro-
perly damped. )

(v) For a certain range of the parameter values, the SADI scheme is much less sensitive to the choice of
these values that the ADI scheme.
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